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SUMMARY 

A computational method for three-dimensional flows is presented in terms of two stream functions, which 
may be considered as two components of a generalized vector potential. An iterative scheme is developed such 
that only a sequence of two-dimensional-like problems, for each function, is solved. The convergence of the 
iterative scheme is studied based on von Neumann linear analysis. For transonic flow calculation, numerical 
methods used for potential flows are readily applied, namely artificial density and Zebra relaxation. Results of 
transonic flow calculations around a wing are presented. 
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INTRODUCTION 

In general, three-dimensional calculations are expensive and, for some configurations, approxi- 
mate models are useful for engineering purposes. For example, Wu' suggested solving three- 
dimensional turbomachinery problems using two stream functions defined on blade-to-blade and 
hub-to-shroud surfaces. Due to the approximations in his analysis, only quasi-three-dimensional 
effects are accounted for. Another classical example of approximate models is the use of asymptotic 
wing theories.2 For high-aspect-ratio wings, the lifting-line concept to Prandtl is a practical tool. In 
these cases, only two-dimensional calculations are needed and the three-dimensional effect is 
produced through the induced angle of attack. For low-aspect-ratio wings, in the transonic regime, 
the area rule of Oswatitsch offers a great simplification. Far from the wing, the flow field is similar 
to that around a body of revolution with the same cross-sectional area distribution; hence only an 
exisymmetric flow calculation is needed. 

Because of the rapid progress in computer technology, full three-dimensional calculations are 
feasible, and accurate prediction of flow fields is obtained without such approximations. The above 
models, however, could be useful in constructing efficient iterative algorithms to solve more general 
cases.3 Such algorithms should also be capable of treating the full three-dimensional problem in its 
complete form. 

In this paper, a method is presented for calculating three-dimensional transonic flows through a 
sequence of two-dimensional-like problems. Results are presented only for irrotational flows. 
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Possible extensions to treat rotational effects are discussed. For convenience, linearized boundary 
conditions are used, but this is not, of course, a restriction to the present method. 

FORMULATION O F  THE PROBLEM 

In Reference 4, the stream function equation for transonic two-dimensional flows is solved and a 
technique is presented to overcome the main difficulty of such a formulation; namely, that the 
density is not uniquely determined in terms of the flux, since there are two solutions-the subsonic 
and the supersonic branches, with a square root singularity at the sonic point. Differential, integral 
and variational formulations of rotational flows are presented. Numerical results based on the 
artificial density method5 and a Zebra relaxation6,’ procedure are compared with Euler and 
potential solutions. In general, stream function calculations are almost as fast as the potential (the 
convergence rate is faster, but the computational rate is slightly lower due to the density 
complications). On the other hand, existing Euler calculations, explicit and implicit, are much 
slower (and the computational rate is at least twice as slow). Extension to three-dimensional flows 
in terms of two stream functions is also briefly discussed in Reference 4. In this paper, a different 
approach is used, which offers some simplifications. In the following, a comparison between the 
two approaches is given. 

THE FIRST APPROACH 

The flux vector pq can be presented in terms of two stream functions + and 0 as4 

pq = V$ x V0. 

Thus the continuity equation is automatically satisfied, since 

vqpq) = v.(v+ x ve) = 0. 

u = (*Y& - 0 Y * Z ) / P 9  v = (- *,ex + e x * z ) / P ,  w = W X O Y  - Ox*Y)/P> 

In terms of Cartesian co-ordinates, the velocity components u, u and w are defined by 

and the governing differential equations are 

or 

where 

WY - u, = 0 1 ,  u, - w, = 02, v, - uy = w 3  

($)y + ( :)z = ( $qY + (%) Z + wl, 

( >), + ( >)x = (%)= + ($) X + 02, 

( >)x + (+)) = ( %)x + (+) Y + w 3 ,  

o = V x q a n d h e n c e V - w = O o r  
0lx + + 0 3 ,  = 0. 

Any two equations of (5) can be solved for $ and 6. The above system reduces to the usual two- 
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dimensional case when, for example, 8 = z and $ = $(x, y) .  
If the equation of the body is 

B(x, Y ,  z) = 0, 

v* x VB-VB = 0; 

(7) 

(8) 
i.e., the body is a stream surface. 

Some choices of iterative algorithms are obvious from the way the equations are written. 
Comparing with the potential formulation, for example, the computational rate will be definitely 
unfavourable due to the number of terms involved. 

the boundary condition is 

THE SECOND APPROACH 

Another approach is based on the vector potential, where, according to the Helmholtz theorem, 
any vector can be represented as the gradient of a scalar plus the curl of another vector which is 
divergence-free. In other words, a vector field is completely determined if all its sources and all its 
vortices are given8 For incompressible flows, 

and 

If 

v * q  = s (9) 

v x q = 0 .  (10) 

(11) 

(9' 1 

q = -v4 + v x Jr,  
where 4 is a scalar and \Ir is a vector, such that V-Jr = 0, equations (9) and (10) reduce to 

- v24 = s, 
- VZJr = 0, (10) 

since V x (V x JI) = V(V.$) -V2Jr. For a flow around a closed body, where there are no sources 
in the field (S = 0), 4 can vanish everywhere. 

Similarly, for compressible flows, 

and 

Let 

v - p q  = s 

v x q = 0 .  

P q = - P V 4 + V X \ I r r ,  
where 4 is scalar and Jr is a vector. Equations (12) and (13) reduce to 

- V . p V 4  = s, (17) 

(13') v x (V x Jryp  = 0.  

Again, q5 can vanish identically if S = 0. 

given in the Appendix), the velocity components u, u and w are defined by 
In terms of Cartesian co-ordinates (the corresponding equation in generalized co-ordinates is 

u = (*3y - * Z Z ) / P ,  = (- *3x + * I Z ) / P ,  w = (*zx - *1J/P (15) 
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and the governing differential equations become 

For the two-dimensional case, $ 1 ,  $z,ol and o2 vanish identically. The boundary condition is 

or 

FURTHER SIMPLIFICATIONS 

Although it is preferrable to have symmetry in equations (1 6), in particular when there is a strong 
coupling between the different components of the vorticity, it is not necessary, for steady state 
calculations, to keep the threefunctions$,, and 4b3. One ofthecomponentsofthevector potential 
$can beset equaltozeroeverywhere. Forexample,if$, ischosen to bezero,thevelocityisdefinedby 

(15') u = ($3, - * Z Z ) / P ,  u = - $ 3 x / P ?  w = L / P  

and the governing equations are 

where the equation for (ol is now in terms of $z and q3 only and the boundary condition is 

($3, - $zz)Bx + (- 6 3 x 1 4  + ( $ z x ) 4  = 0.  (1 7") 

Obviously, the simplified system ($2 ,$3 )  is a special case; the relation to the more general 
formulation G 2 ,  G 3 )  is 

P 

provided 

Condition (19) is satisfied by most practical flows.g 
Notice that, unlike the functions $ and 8 which appear in (3) ,  (5) and (S), t,hL= constant and 

$3 = constant are no longer physical stream surfaces. The terms ($3y /p ) z  and ( $ 2 Z / p ) y  represent 
the cross-flow effects and are responsible for the three-dimensional coupling. 

LEAST-SQUARES AND VARIATIONAL PRINCIPLE 
FOR ROTATIONAL FLOWS 

It is noticed in Reference 10 that the vector potential formulations can be obtained in an alternative 
way without using explicitly the Helmholtz theorem. In Cartesian co-ordinates, equations (12) and 
(1 3 )  become 

( P I X  + ( P 4 ,  + (PW),  = s, 
u, - u, = w3, - wx + u, = 0 2 ,  wy - u, = 0 
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or, in matrix-vector notation, 

The previous system is overdetermined (four equations and three unknowns). If least squares are 
used, derivatives of u, v, w and w require special treatment if they are not continuous; thus the 
following functions are introduced through the adjoint operator as 

or 
-p6X + $ 3 ~ -  $22 = Pu, - p 6 y  - $ 3 X  + $12 = -p6z  + $ 2 ~  - $ l y  = pw. (21’) 

If 4 is chosen zero (when S = 0), equations (21’) becomes the same as equations (15). Similarly, if 
$1 is chosen to be zero, the simplified equations (15’) are obtained. 

It should be mentioned that there is a variational principle (at least for subsonic flows). As 
discussed in Reference 4, the functional I = Jvp + pq’ dV is stationary and, through minimization, 
the governing differential equations and the associated natural boundary conditions are obtained. 

GLOBAL ITERATIVE PROCESS FOR THE COUPLED 
STREAM FUNCTION EQUATIONS 

Since the coupled system of equations for the stream functions can be derived from a least-squares 
procedure, standard iterative techniques (Jacobi, Gauss-Seidel and successive over-relaxation) 
should converge, A von Neumann analysis for incompressible flows confirms this conclusion. 

Consider the splitting 

($’x/P):+l + ( $ ’ z / P ) : + l  = ($3y/P): - 0 2 ,  

Let 

a$3 = g;ei(t;x+tly+Cz), (23) 

where S$z and 
(23) in (22) yields (p = 1) 

are the differences between the n-iterates and the exact solution. Substituting 

- (5’ O + $1 ) -o“’> (;a> 
or 

where 

A faster convergence is expected if the most recent value of $z is used in the right-hand side of the 
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( :)x + ( y)y = (F) T 

v 

*3x 

* 3 Y  - * 2 z  

* l X  

* 3 Y  - * 2 r  

v =  --u 

w=-u 

1 K Y - l )  

? 

M2q2 - 1) ) ( '1' p =  I-- 

$3 equation. Indeed, a Gauss-Seidel iteration is twice as fast and over-relaxation will further 
improve the convergence. 

In the actual calculations, inner and outer iterations are used to solve for I&+' and $:+I. 

Because of non-linearity, only a few inner iterations for each outer iteration are used. It should be 
mentioned that a two-dimensional splitting for a 3D potential equation is not recommended, since 
the iteration based on equation (25), 

4 z 1  ++;;I = - 4L (25) 

may not converge for general three-dimensional problems. 

*3x 

* 3 Y  - * 2 z  

* l X  

* 3 Y  - * 2 r  

v =  --u 

w=-u 

1 K Y - l )  

? 

p =  I-- M2q2 - 1) ( '1' 

COMPUTATIONAL ALGORITHMS 

The equations in conservation form are discretized using finite differences. For transonic flows, an 
artificial viscosity is added through modifying the density4: 

P = P - WP& 

A 

where 

P = P - WP& 

A 

The switching factor p is expressed in terms of p to avoid repeated calculations of the Mach 
numbers; i.e., 

P = Emax LO, 1 - (P/P,)" l ,  (27) 
where pc is the critical value of the density or a cut-off value close to the sonic condition. The 
exponent n is chosen to be 1. The factor E controls the amount of viscosity. 

Following Reference 4, the algorithm described in Figure 1 is used. In these calculations, it is 
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Figure 2. A simple iterative algorithm 

assumed that the three-dimensional effects are a perturbation (not necessarily small) on the two- 
dimensional flow component in the xy plane. 

A simpler procedure is described in Figure 2. In general, such an algorithm is used only for 
subsonic flows. If p is under-relaxed and more artificial viscosity is added, the simple algorithm 
converges even for difficult transonic cases. 

TRANSONIC FLOWS AROUND AEROFOILS AND WINGS 

Consider first an irrotational two-dimensional flow around a wing section. The far-field 
boundary condition is given in terms of the circulation T(p, = qm = 1): 

(28) 
flr $ = ycosa - xsina + -h(x2 + f12y2), 

where f12 = 1 - M: and a is the angle of attack. r is calculated by integrating the velocity along 
the aerofoil: 

4.n 

r =  qdS. (29) i 
The other boundary condition is that the aerofoil is a streamline, $ = C ;  C is not known a priori. 

Together with the Kutta condition, the formulation is complete. In Reference 11, exact boundary 
conditions and body-fitted co-ordinates are used. In the present work only linearized boundary 
conditions along a slit are considered. The unknown constant C is calculated to guarantee that t,hy 
is the same on the top and the bottom of the aerofoil at the trailing edge; so, as a first order 
approximation, 

= [$(xTE, + h, + $(%E? - h)1/2, (30) 
where h is the grid size. 
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I J 

South12 suggested that, if the outer boundary is chosen such that x2 + F 2 y 2  is approximately 
constant, the contribution of the vortex is just a constant which can be subtracted everywhere. 
Thus the outer boundary condition does not vary with iteration, leading to reliable convergence. 

For a three-dimensional flow around a wing, the linearized condition is (where x is in the 
flow direction and z along the spanwise direction) 

f x =  - * 3 x  (3 1) 

(31') 
or 

Transferring these conditions to the plane y = 0 yields, on the upper and lower sides respectively, 

f =  - *3 + C(Z). 

*3u = C(4 - fu(x, Y), *31= C(Z) + fib, 4. 
The Kutta condition is used in the same way as in the two-dimensional case, where at each 
spanwise location the small disturbance condition is simply 

or 

In the far field, the flow is uniform and 1 / / 2  vanishes there. In the plane y = 0 on the wing surface and 
the vortex sheet, ~ + b ~  is calculated by averaging the corresponding values above and below this 
particular plane. 

Numerical results for two-dimensional subsonic and transonic lifting and non-lifting flows are 
plotted in Figure 3. Comparisons with other results, potential and stream function solutions, are 
included. 

In Figures 4 and 5, three-dimensional results are compared with those of Reference 13. 

uu = u1 (32) 

(32') (hY - *2z)u = ( * 3 y  - *2z)1. 

Mm = 0.72 

Figure 3(a). Section pressure distribution for an infinite wing compared with other two-dimensional solutions16 for 
NACA0012:-Jameson;---- Holst; 2-D stream function + exact B.C.; 0 present 
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Figure 3(b). Section pressure coefficient for lifting an infinite wing compared to two-dimensional solutions (a = 2"): 
Bridgeman and Steger; + 2-D stream function + exact B.C.; 0 present 

Convergence histories for the two stream functions are given in Figure 6. 

CONCLUSIONS 

Three-dimensional irrotational transonic flow around a wing is calculated in terms of two stream 
functions. Extension to rotational flows requires shock detection to evaluate the entropy function 
and hence the generated vorticity. Also, vorticity generated due to the variation of the total 
enthalpy can be treated; e.g., wings in non-uniform flows. In Reference 14, three-dimensional 
viscous flows are simulated using two stream functions, but only incompressible flows are 
considered. Work is in progress to combine the present transonic capability with the viscous flow 
calculations. 

APPENDIX. STREAM FUNCTION EQUATIONS 
IN GENERALIZED CO-ORDINATES 

Let xi be a system of Cartesian co-ordinates, y' be a system of curvilinear co-ordinates and ej be 
the natural tangent vectors to the co-ordinate curves y' .  

$2, tj3) is given by (see Reference 15) In three dimensions, the curl of a vector field \Ir = 

where Einstein summation conventions have been employed and eijk is defined by 

and Eijk = ggijk, with 

a X k  a x k  
9 . .  = e . - e .  =-a- g - J~ = [det ( a x i / a y i ) l 2 .  

l l  t aY' a Y j '  
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Figure 4. Comparison of the distributions of section pressure coeficient for a NACA 0012 lifting rectangular wing: 
A R = 6 , M m = 0 . 6 3 , a = 2 "  

I 

The flux vector pq is defined as 

pq = curl $, 
giving 
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Figure 5. Comparison of the distributions of section pressure coefficient for a NACA 0012 lifting rectangular wing; 
A R = 6 , M ,  =0.75,a=2", grid(81,51,12) 

The covariant velocity components are obtained from (34) through 

q. = g.  .qJ 
1 v 

or, in expanded form, 
(35) 
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Figure 6. Convergence histories for the residuals of and +2 compared with a two-dimensional calculation 

The vorticity is then defined as 

The resulting equations corresponding to equations (1 5) are obtained by combining equations (36) 
and (37). For a two-component potential, the equations corresponding to equations (16’) 
are obtained by dropping $l terms and for a two-dimensional case by dropping $1 and G2 terms. 
Equations in orthogonal co-ordinates are obtained by dropping all g i j  terms where i # j .  
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